数学手抄报模板内容
数学手抄报模板内容资料一
趣味数学题
【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
【2】周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。 "等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出的手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺
序:小李先开,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻一个新的方法来维持他们之间的.和平。该怎么办呢?
数学手抄报模板内容资料二
函数小史
数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用。有些重要的数学概念对数学分支的产生起着奠定性的作用。我们刚学过的函数就是这样的重要概念。在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域。纵览宇宙,运算天体,探索热的传导,揭示电磁秘密,这些都和函数概念息息相关。正是在这些实践过程中,人们对函数的概念不断深化。
他又用函数表示在直角坐标系中曲线上一点的横坐标、纵坐标。1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量。”意思是凡变量x和常量构成的式子都叫做x的函数。贝努利所强调的是函数要用公式来表示。
后来数学家觉得不应该把函数概念局限在只能用公式来表达上。只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,就不作为判别函数的标准。
1755年,瑞士数学家欧拉把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”在欧拉的定义中,就不强调函数要用公式表示了。由于函数不一定要用公式来表示,欧拉曾把画在坐标系的曲线也叫函数。他认为:“函数是随意画出的一条曲线。”
数学手抄报的内容当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱怀疑态度。他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”。1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变
数叫做函数。”在柯西的定义中,首先出现了自变量一词。
1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化。函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。函数的这种依赖关系可以存在,但仍然是未知的。”这个定义指出了对应关系(条件)的必要性,利用这个关系,可以来求出每一个x的对应值。
1837年,德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数。”这个定义抓住了概念的本质属性,变量y称为x的函数,只需有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的y值和它对应就行了,不管这个法则是公式或图象或表格或其他形式。这个定义比前面的定义带有普遍性,为理论研究和实际应用提供了方便。因此,这个定义曾被比较长期的使用着。
自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在中学课本里用的了。
发布评论