初中数学知识点-三角形
考点一、三角形
1、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 2、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。 推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积
三角形的面积=2
1
×底×高
考点二、全等三角形 1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。 2、三角形全等的判定 三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
3、全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
2、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
解直角三角形
考点一、直角三角形的性质 1、直角三角形的两个锐角互余
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半
4、直角三角形两直角边a ,b 的平方和等
于斜边c 的平方,即222c b a =+
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90° BD AD CD ∙=2
⇒ AD AC ∙=2
CD ⊥AB AB BD BC ∙=2 6、常用关系式
由三角形面积公式可得: AB ∙CD=AC ∙BC
考点二、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°
①c a
sin =∠=
三角形的内角斜边的对边A A
②c b
cos =∠=
斜边的邻边A A
③b
a
tan =∠∠=
的邻边的对边A A A
④a
b
cot =∠∠=
的对边的邻边A A A
2、一些特殊角的三角函数值
3、各锐角三角函数之间的关系
(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A)
(2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)弦切关系:tanA=A
A
cos sin 三角形相似
考点一、比例线段 1、比例的性质 (1)基本性质 ①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2
(2)更比性质(交换比例的内项或外项)
⇒=d c b a a
c
b d =(交换外项) a
b
c d =(同时交换内项和外项)
(3)反比性质(交换比的前项、后项):
c
d a b d c b a =⇒= (4)合比性质:
d
d c b b a d c b a ±=±⇒= (5)等比性质:
b
a n f d
b m e
c a n f
d b n m f
e d c b a =++++++++⇒≠++++==== )0( 3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=
2
1
5-AB ≈0.618AB 考点二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。 考点三、相似三角形 1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示
2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
发布评论