神奇的莫比乌斯带
一. 教学目标
3. 让学生经历猜想与现实的冲突,感受“莫比乌斯带”的神奇变化,培养探究精神。
二.教学准备
剪刀,水彩笔,长方形纸条
三. 教学过程
1. 魔术引入
出示图片——刘谦——用纸条将两个环形针连到一起。
活动一:认识“莫比乌斯带”。
一、制作圆形纸带。
1.观察:一张普通长方形纸片,它有几条边?几个面?
2.思考:你能把它变成两条边,两个面吗?
3.操作:学生动手,取长方形纸条,制作成圆形纸圈。
4.验证:用手摸一摸,感受两条边,两个面。
5.再思考:你能把它的边和面变更少一些,把它变成一条边,一个面吗?
二、制作“莫比乌斯带”。
1.操作:学生动手,尝试制作“一条边,一个面”的纸圈。
2.介绍做法,强调:一头不变,另一头扭转180度,两头粘贴。
3.验证:
⑴质疑:这个纸圈真的只有一条边,一个面吗?怎么验证“一条边,一个面”?
⑵教师指导验证方法,学生动手验证。
⑶交流验证结果:真的只有一条边,一个面。
⑷动态展示,加深认识。
⑸感受:用手摸一摸它的面,感受一下,只有一条边,一个面。
4.小结:
⑴介绍:这个“怪圈”是德国数学家莫比乌斯在1858年研究时发现的,所以人们把它叫做“莫比乌斯带”。
⑵出示课题:“莫比乌斯带”。
活动二:研究“莫比乌斯带”。
一、剪“莫比乌斯带”(二分之一)
1.猜一猜:如果沿着“莫比乌斯带”的中间剪下去,剪的结果会怎样?
①一分为二成两个圈。②断开成两段。
2.剪一剪:学生动手,沿着“莫比乌斯带”中间剪。验证猜测。
3.交流:沿着纸带中间剪下去,会变成一个两倍长的圈。
4.揭密:为什么没有一分为二变成两个圈?而是变成一个两倍长的圈?麦比乌斯圈
5.质疑:这个大圈还是“莫比乌斯带”吗?学生动手验证。
二、剪“莫比乌斯带”(三分之一)
1.猜一猜:如果我们沿着三等分线剪,剪的结果又会是怎样呢?
①变成一个大圈。②两个套在一起的圈。
2.剪一剪:取长方形纸片,再做一个“莫比乌斯带”,学生动手,验证猜测。
3.交流:发现变成一个大圈套着一个小圈。
4.揭密:和你的猜测一样吗?为什么会变成一个大圈套着一个小圈?
活动三:介绍“莫比乌斯带”在生活中的应用。
1.交流“莫比乌斯带”的理念在生活中的应用。
2.延伸:后来科学家们通过对莫比乌斯带的深入研究,就慢慢形成了一门新的学说——拓扑几何学。
活动四:自由剪“莫比乌斯带”。
如果不是旋转180度,而是更多的度数,或者沿四分之一,五分之一的宽度剪开“莫比乌斯带”,又会有什么新的发现呢?大家不妨同桌先猜猜,再动手试试,最后验证你们的猜测!
活动五:课堂小结。
这节课你学到了什么?有什么感受?上了这节课对你今后的学习有什么帮助?
四. 板书设计
神奇的莫比乌斯带
4条边,2个面 二分之一 一个大圈
2条边,2个面 三分之一 一个大圈,一个小圈
1条边,1个面 四分之一 …
发布评论