黑龙江大学硕士研究生入学考试大纲
考试科目名称:高等代数考试科目代码:[820]
一、考试内容及要求
一、行列式
1.内容:行列式概念及性质,行列式按行(列)展开。
2.要求:
②理解n阶行列式的定义,掌握行列式性质。
③能用行列式定义、性质(包括按行(列)展开的性质)递推及归纳法等计算行列式。
二、矩阵
1.内容:矩阵的概念,矩阵运算,逆矩阵和克莱姆法则,分块矩阵,初等变换和初等阵,矩阵的等价分解,矩阵的秩,初等块矩阵及等价分解的应用。
2.要求:
①理解矩阵概念及相关运算法则,能熟练地进行矩阵的相关运算,掌握行列式乘法定理。
②理解逆矩阵的概念,掌握伴随矩阵求逆方法,掌握矩阵可逆充要条件并用于判别,理解克莱姆法则并用于求解线性方程组。
③了解分块矩阵的运算法则,准确用于计算。
④理解三种初等变换及相应的初等阵,了解初等阵是可逆阵的乘法生成元。
⑤理解矩阵的等价分解,理解矩阵秩的定义,能用初等变换求矩阵秩及逆矩阵。
⑥能利用等价分解、分块矩阵、初等矩阵及归纳法等解决一些矩阵分解,求秩相关的计算和证明问题。
三、n维向量与线性方程组
1.内容:n维向量,向量的线性相关性,向量组的秩,消去法解线性方程组,线性方程组解的判定,线性方程组解的结构。考研时间2021考试时间
2.要求:
①掌握n维向量线性表出,线性相关,线性无关的概念,能进行判别及相关的证明。
②理解向量组的秩,矩阵的三秩相等定理,掌握向量组的秩以及极大无关组的概念,会求极大无关组以及向量组的秩。
③能用消去法解线性方程组,特别能对带参数的方程组进行解的情况的讨论。
④掌握齐次方程组基础解系定理,一般线性方程组解的结构定理,并能用于解决有关问题。
四、特征值与特征向量
1.内容:特征值与特征向量,相似矩阵,R n空间内积,正交阵,实对称阵的正交对角化。
2.要求:
①掌握特征值与特征向量的概念及求法。
②理解矩阵相似的概念,理解矩阵相似于对角阵的充要条件及充分条件,会进行相关的计算和证明。
③掌握施密特正交化方法并能用于将实对称阵正交对角化。
④理解正交阵的概念及等价条件,利用实对称阵正交对角化定理解决一些论证问题。
五、二次型
1.内容:实二次型,正定二次型,半正定二次型,惯性定理,一般数域上的二次型。
2.要求:
①掌握一般二次型的概念,用矩阵和内积分别表示二次型的方法。
②理解实二次型的惯性定理,掌握实数域及一般数域上二次型的标准形及其求法。
③理解正定二次型,半正定二次型的概念及若干等价条件并能用于相关计算与证明。
六、多项式
1.内容:一元多项式,整除,最大公因式,因式分解定理,重因式,多项式函数,复系数及实系数多项式因式分解,有理系数多项式。
2.要求:
①掌握数域上一元多项式的概念及相关运算(包括带余除法)。
②理解多项式整除及最大公因式等概念,会用辗转相除法求最大公因式。
③理解因式分解定理及其唯一性的含义,掌握有重因式的充要条件,并能用于判别。
④理解多项式恒等与多项式函数相等的关系,能利用恒等或判别恒等解决相关问题。
⑤掌握整系数多项式的有理根判别法以及关于不可约的Eisenstein判别法解决某些问题。
⑥了解复系数多项式的代数基本定理,理解实系数多项式的虚根成对定理,并能用于简单证明。
七、线性空间
1.内容:线性空间定义及简单性质,维数,基底与坐标,基变换与坐标变换,线性
子空间,子空间的交与和,子空间的直和,线性空间的同构。
2.要求:
①理解线性空间的公理化定义,掌握其简单性质。
②掌握线性空间维数,基底,坐标等概念,掌握基变换及坐标变换公式进行有关计算。
③掌握线性子空间,交子空间,和子空间的概念及交与和的维数公式。
④理解子空间直和的概念,掌握直和的几个充要条件并能用于相关证明和计算。
⑤理解线性空间的同构概念,掌握有限维线性空间同构的条件。
八、线性变换
1.内容:线性变换及其运算,线性变换的矩阵,哈密顿-凯莱定理,线性变换的值域与核,不变子空间,若当标准形介绍,最小多项式,矩阵相似与λ-矩阵。
2.要求:
①掌握线性变换概念并能用于判别,理解线性变换的加法,数乘,乘法运算。
②掌握线性变换的矩阵表示及其求法,了解哈密顿-凯莱定理。
③理解线性变换的值域与核的概念,并了解其与线性方程组基础解系定理之间关系。
④理解线性变换不变子空间的概念,掌握空间分解为不变子空间直和与矩阵相似于准对角阵之关系。
⑤了解复矩阵若当标准形的结构,能用λ-矩阵方法求一个复矩阵的若当标准形。
⑥了解最小多项式的概念,会求简单阵的最小多项式。
⑦了解用λ-矩阵表述的矩阵相似的几个充要条件。
九、欧氏空间
1.内容:欧氏空间定义及其基本性质,标准正交基,同构,正交变换,子空间,对
称变换,最小二乘法,酉空间。
2.要求:
①掌握抽象欧氏空间的定义及其基本性质。
②理解标准正交基及欧氏空间同构的概念,会求一个欧氏空间的标准正交基。
③掌握有限维欧氏空间的正交变换的定义及其等价条件并能用于证明。
④理解欧氏空间子空间及其正交补的概念,会进行相关计算与证明。
⑤了解对称变换及其矩阵表示,了解最小二乘法的思想。
⑥了解酉空间的概念及与欧氏空间相平行的结论。
二、试卷结构
1.考试时间:180分钟
2.试卷分值:150分
3.题型结构:(1)多项选择与填空(约占20-30分)
(2)计算题(约占50-60分)
(3)证明题(约占60-70分)
三、参考书目
1.曹重光, 线性代数, 内蒙古科学技术出版社, 1999.
2.北京大学数学系几何与代数教研室前代数小组, 高等代数(第三版), 高等教育出版社, 2003.
发布评论