五年级数学下册概念练习题
班级 考号 姓名 总分
一、观察物体
1、根据从 个方向观察到的平面图形不可以确定几何体的唯一形状。
2、根据从 个方向观察到的平面图形可以确定几何体的唯一形状。
二、因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
大数能被小数整除时,大数是小数的 数,小数是大数的 数。
家肥屋润绿水逶迤因数的方法:制作铃声
一个数的因数的个数是 的,其中最小的因数是 ,最大的因数是 。
一个数的倍数的个数是 的,最小的倍数是 。
因数与倍数是相对存在,不能脱离开来:2是4的因数,4是2的倍数因数与倍数指的通常是整数,不能针对小数。2.4×5=12,所以5是12的因数()
2、自然数按能不能被2整除来分:奇数 偶数
:不能被2整除的数
科技与经济 :能被2整除的数。
最小的奇数是 ,最小的偶数是 .
都是2的倍数。
都是5的倍数。
就是3的倍数。
3、自然数按因数的个数来分:质数、合数、1.
:有且只有两个因数,1和它本身
:至少有三个因数,1、它本身、别的因数
1:只有1个因数。 既不是质数,也不是合数。
最小的质数是 ,最小的合数是 。
20以内的质数:有8个( )
三、长方体和正方体
1、由 个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。
3、由 个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有 条棱,它们的长度都相等,所有的面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有 个面, 个顶点, 条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
6、正方体有 个面,每个面都是 ,每个面的面积都相等,有 条棱,每条的棱的长度都相等。
长方体的棱长总和= 三字经朗诵 L=
长=棱长总和÷4-宽 -高 a=L÷4-b-h
宽=棱长总和÷4-长 -高 b=L÷4-a-h
高=棱长总和÷4-长 -宽 h=L÷4-a-b
正方体的棱长总和= L=a×12
正方体的棱长=棱长总和÷12 a=L÷12
6、长方体或正方体 个面和总面积叫做它的表面积。
长方体的表面积= S=
无底(或无盖)长方体表面积(游泳池等)=
S=
无底又无盖长方体表面积(通风管、烟囱等)=
S=
静态测量正方体的表面积= S=
6、物体所占空间的大小叫做物体的体积。
长方体的体积=
V=
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积= V=
7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
常用的容积单位有 和 ,也可以用字母写成 和 。
1升= 立方分米,1毫升= 立方厘米 ,1升= 毫升
【本章重难点】
1、求棱长问题:
2、求面积问题:
最大占地面积(平放桌面的物体求接触面的面积、游泳池求5个面的面积)。
不规则图形面积(?切割成长方形或正方形求面积;?补成一个大的长方形或正方形求面积)。
分割立体图形表面积变化问题(若分割成n段,则增加(n-1)2个切割面的面积)
3、求体积(容积)问题:
分割问题(将正方体铁块熔化成长方体,就根据他们的体积不变去求相关的量)。
排水法(排开水的体积或升高的水的体积就是不规则物体的体积)。
四、分数的意义和性质
五、分数的加法和减法
1、同分母分数加、减法
(1)同分母分数加、减法:
(2)计算的结果,能约分的要约成最简分数。
2、异分母分数加、减法
(1)分母不同,也就是分数单位不同,不能 。
(2)异分母分数的加减法: 异分母分数相加、减,要先 ,再按照同分母分数加减法的方法进行计算。
【本节重难点】
1、分数的意义,重点区别带单位分数与不带单位分数。
如:用去跟用去米一样吗?
把3米平均分为五段,每段长几分之几? 每段长几分之几米?
2、单位一的确定:一般把整体看作单位一
3、一个数是另一个数的几分之几?
4、最大公因数和最小公倍数的确定,约分和通分的区别。
六、统计与数学广角
1、众数: 就是这组数据的众数。
众数能够反映一组数据的集中情况。 在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数:
(1)按 排列;
(2)如果数据的个数是 ,那么 的那个数就是中位数;
(3)如果数据的个数是 ,那么 就是中位数。
3、平均数的求法:
发布评论