2021年安徽省中考数学试题(含答案)
2021年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2021年建成xxxx亩高标准农田,其中xxxx用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是137.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形O
ABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;
再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:
(1)∠PAQ的大小为°;
(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满
分16分)15.(8分)解不等式:1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);
(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:
第1个等式:(1)=2,第2个等式:(1)=2,第3个等式:(1)=2,第4个等式:(1)=2.第5个等式:(1)=2.…按照以上规律,解决下列问题:
(1)写出第6个等式:;
(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10
分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2021年4月份相比,该超市2021年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2021年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2021年4月份的线下销售额(直接在表格中填写结果);
时间销售总额(元)线上销售额(元)线下销售额(元)2021年4月份axa﹣x2021年4月份1.1a1.43x(2)求2021年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;
安徽省中考时间 (2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;
(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;
(2)若AB=1,求AE的长;
(3)如图2,连接AG,求证:EG﹣DGAG.2021年安徽省中考数学参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选
项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;
B、主视图是三角形,故B符合题意;
C、主视图是矩形,故C不符合题意;
D、主视图是正方形,故D不符合题意;
故选:B.4.安徽省计划到2021年建成xxxx亩高标准农田,其中xxxx用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:xxxx用科学记数法表示为:5.47×107.故选:D.5.下列方程中,有两个相等实数根的是()A.x2+1=2xB.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;
B、△=0﹣4=﹣4<0,没有实数根;
C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;
D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;
将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;
(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;
S2[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2],因此方差为,于是选项C不符合题意;
故选:D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;
B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;
C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;
D、当点A的坐标为(3,4)时,3k+3=4,解得:k0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA,则BD的长度为()A.B.C.D.4【解答】解:∵∠C=90°,AC=4,cosA,∴AB,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A,∴,故选:C.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦
AC,则四边形OABC不一定是平行四边形;
原命题是假命题;
B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;
C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;
D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;
故选:B.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GHEJx,∴yEJ•GHx2.当x=2时,y,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.yFJ•GH(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题
共4小题,每小题5分,满分20分)11.计算:1=2.【解答】解:原式=3﹣1=2.故答案为:2.12.分解因式:ab2﹣a=a(b+1)(b﹣1).【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积OA•OBk2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;
发布评论