八年级数学(上)册
各章节知识点总结
第十一章 三角形
一、知识框架:
二、知识概念:
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
8.多边形的内角:多边形相邻两边组成的角叫做它的内角.
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
数学八年级上册
12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,
13.公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
⑶多边形内角和公式:边形的内角和等于·180°
⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:从边形的一个顶点出发可以引条对角线,
第十二章 全等三角形
第一节:全等三角形
形状大小放在一起完全重合的图形,叫做全等形。换句话说,全等形就是能够完全重合的图形。能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。两个三角形全等用符号“≌”表示。如∆ABC≌∆A'B'C'。其中对应的边是AB与A'B'、AC与A'C'、BC与B'C'。如若前一个三角形的边的表示字母变换位置,那么后一个三角形的对应字母也要变换位置,如CB与C'B'为对应边。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。
第二节:三角形全等的判定
上节中知道全等三角形的三条对应边,三个对应角均分别相等。那么是否可以从逆推得三角形全等呢?
由于三角形具有稳定性,那么画图得两个对应边分别相等的三角形,发现它们全等,对应角也相等。
再次,画图得两个对应角分别相等的三角形,发现,它们的对应边成比例,但是不一定相等,例如,两个等边三角形,角都相等,但是边长不一定相等。
所以有判定一:三边对应相等的两个三角形全等(边边边或SSS)。
画图得两个角度相等,边分别相等的两个角,依次分别连接角的边的端点,得两个全等的三角形(两边与夹角确定第三边)。
有判定二:两边和它们的夹角对应相等的两个三角形全等(边角边或SAS)。
画图得两条长度相等的线段,分别以线段两端点为起点做射线,射线与线段的夹角对应相等,两条射线相交与一点,形成两个三角形。这两个三角形全等。
有判定三:两个角和它们的夹边对应相等的两个三角形全等(角边角或ASA)。
画图得两个角度和一边对应相等的两个角,分别从该边向另一边引一条射线,射线与另一边的夹角对应相等。形成的两个三角形全等。
有判定四:两个角和其中一角的对边对应相等的两个三角形全等(角角边或AAS)。
画图得两个直角三角形,它们的斜边和一条直角边对应相等,这两个三角形全等。
有判定五:斜边和一条直角边对应相等的两个直角三角形全等(斜边、直角边或HL)。
第三节:角的平分线的性质
作图:已知,求作的平分线
做法:1、以O为圆心,适当长为半径画弧,交OA于M,交OB于N;2、分别以M、N为圆心,大于MN的长为半径画弧,两弧在的内部交于点C;3、画射线OC。射线OC即为所求。
从射线OC上任选一点,分别作OA、OB的垂线段,沿着OC折叠,会发现OA、OB的垂线段完全重合。
故,有角的平分线的性质:角的平分线上的点到角的两边的距离相等。
同理:角的内部到角的两边的距离相等的点在角的平分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
①确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);
②回顾三角形判定,搞清我们还需要什么;
③正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
可以逆推,由需要证明的结论一步步推导出已知条件。
第十三章 轴对称
第一节轴对称
如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。可以说这个图形关于这条直线(成轴)对称。
把一个图形沿着以一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
第二节:画轴对称图形
画轴对称图形的步骤:1、选择已知图形的关键点;2、依次过它们做垂直于已知直线的垂线,截取直线两边的线段长度相等,则新点即是已知图形的关键点关于直线对称的点;3、
依次连接各个点。所得图形即为已知图形的轴对称图形。
轴对称图形可以经过旋转得出。
用坐标轴表示轴对称:关于x轴对称(x,y)与(x,-y);关于y轴对称(x,y)与(-x,y)。
第三节等腰三角形
有两个边相等的三角形叫做等腰三角形。
等腰三角形的性质:1)等腰三角形的两个底角相等。简言之:等边对等角。
2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。简言之:等角对等边。
一种特殊的等腰三角形——等边三角形,三条边相等,三个角相等并且都为60º。
反推,三个角都相等的三角形是等边三角形;有一个角是60º的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半
第十四章 整式的乘法与因式分解
第一节:整式的乘法
1.同底数幂的乘法
一般地,对于任意底数a与任意正整数m,有(m、n都是正整数)。即同底数幂相乘,底数不变,指数相加。该乘法法则是幂的运算中最基本的法则。
在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正整数);
⑤公式还可以逆用:(m、n均为正整数)。
2.幂的乘方
一般地,对任意底数a与任意正整数m、n,有(m、n都是正整数)。即幂的乘方,底数不变,指数相乘。该法则是幂的乘法法则为基础推导出来的,但两者不能混淆。
另有:(m、n都是正整数)。
当底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3。
底数有时形式不同,但可以化成相同。
要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
3.积的乘方法则
一般地,对于任意底数a、b与任意正整数n,有(n为正整数)。即积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积乘方法则均可逆向运用。
4.整式的乘法
1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。即单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
3)多项式与多项式相乘:先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
发布评论