2021年考研数学(二)考试大纲(原文)
2022年考研数学〔二〕考试大纲〔原文〕2022数学二考试大纲
考试科目:高等数学、线性代数
考研时间2022考试时间
考试形式和试卷结构
一、试卷总分值及考试试卷
试卷总分值为150分,考试试卷为180分钟二、答题方式
答题方式为闭卷、笔试。
三、试卷内容结构
高等数学约78%
线性代数约22%
四、试卷题型结构
单项选择题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题〔包括证明题〕 9小题,共94分
高等数学
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数根本初等函数的性质及图形初等函
数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比拟极限的四那么运算极限存在的两个准那么:单调有界准那么和夹逼准那么两个重要极限:
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握根本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四那么运算法那么.
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四那么运算法那么和复合函数的求导法那么,掌握根本初等函数的导数公式.了解微分的四那么运算法那么和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法那么求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.