(教案2)28.2解直角三角形
第一篇:(教案2)28.2解直角三角形
课题
28.2解直角三角形
一、教学目标
1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2、逐步培养学生分析问题、解决问题的能力.
3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识
二、教学重点、难点
重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从
而利用所学知识把实际问题解决. 难点:实际问题转化成数学模型
三、教学过程
(一)复习引入
1.直角三角形中除直角外五个元素之间具有什么关系?请学生口答.
2、在中Rt△ABC中已知a=12 ,c=13 求角B应该用哪个关系?请计算出来。
(二)实践探索
要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角,(如图).现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角能够安全使用这个梯子
引导学生先把实际问题转化成数学模型 然后分析提出的问题是数学模型中的什么量 在这个数学模型中可用学到的什么知识来求 未知量?
几分钟后,让一个完成较好的同学示范。
(三)教学互动
例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0.1 km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船
观测地球时的最远点.弧PQ的长就是地面上P, Q两点间的距离.为计算弧PQ的长需先求出(即)
等于多少(精确到1o)这时人是否
一般要满足 1
解:在上图中,FQ是⊙O的切线,是直角三角形,弧PQ的长为
由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离 P点约2 009.6 km.(四)巩固再现 练习1,习题 1
四、布置作业习题 2,3
第二篇:28.2.1解直角三角形教案
28.2.1解直角三角形
西湖中学 黄 勇
一、内容和内容解析
1、内容:解直角三角形的意义,直角三角形的解法。
2、内容解析:本节是学习锐角三角函数之后,结合已学过的勾股定理和三角形内角和定理,研究解直角三角形的问题。本课内容既能加深对锐角三角函数的理解,又能为后续解决与其相关的实际问题打下基础,在本章起到承上启下的作用。
二、目标和目标解析
1.了解解直角三角形的意义和条件.
2.能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的知识解决有关的实际问题.
目标解析:达成目标1的标志是,知道解直角三角形的内涵,能根据直角三角形中已知元素,明确所有要求的未知元素。达成目标2的标志是根据元素的关系,选择适当关系式,求出未知元素。
三、学情分析
在直角三角形的边角关系中,三边之间的关系、两锐角之间的关系比较直接,而两边的比与一个锐角的关系,学生通过学习锐角三角函数,有了一定的基础,但在具体的直角三角形中,根据已知条件选择恰当的锐角三角函数,还是有些困难,且解直角三角形往往需要综合运用勾股定理及三角函数的知识,具有一定的综合性。
CB
四、教学过程
1、实例引入,初步体验
本章引言提出的比萨斜塔倾斜程度的问题。设塔顶中心点为B,塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引 垂线,垂足为点C,在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数。
sinA=BC5.2 ≈0.0954 AB54.5A一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个角,由已知元素求出其余未知元素的过程,叫做解直角三角形.
解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如下图:
角角关系:两锐角互余,即∠A+∠B=90°;
222边边关系:勾股定理,即a b c;
边角关系:锐角三角函数,即:
a,cosA cbsinB ,cosB csinA b,tanA ca,tanB ca,cotA bb,cotB abaab
解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);
(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.
用解直角三角形的知识解决实际问题的基本方法是:
把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.
借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.
例1 在△ABC中,∠C=90°,根据下列条件解直角三角形. AC 2,BC 6解这个直角三角形。
思路与技巧
求解直角三角形的方法多种多样,可以先求AB,也可以先求∠A,依据都是直角三角形中的各元素间的关系,但求解时为了使计算简便、准确,一般尽量选择正、余弦,尽量使用乘法,尽量选用含有已知量的关系式,尽量避免使用中间数据. 解答
三峡教案
tanA BC 6 3AC2
  A 60o
B 90o  A 90o 60o 30o AB 2AC 22A
C B 例2 如图,CD是Rt△ABC斜边上的高,BC 23,CD 22,求AC,AB,∠A,∠B(精确到1′).
思路与技巧 在Rt△ABC中,仅已知一条直角边BC的长,不能直接求解.注意到BC和CD在同一个Rt△BCD中,因此可先解这个直角三角形.
解答 在Rt△BCD中
BD BC2 CD2 12 8 2
sinB cosB CD226  BC323BD23  BC323