〖人教版数学六年级下册在直线上表示数优秀教案第【1】篇〗
学习目标:
1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。
2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。
3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。
重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。
学习过程:
一、课前预习导学
1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。
2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。
第1题
第2题
3、如图,若是中点,是中点,六年级下册数学教案
(1)若,_________;
(2)若,_________。
二、课堂学习
1、议一议:
(1)、在平面内画一个点,过这个点画直线,能画多少条?
(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?
(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?
总结:“过两点有______,并且____”
思考:过平面上三点中的每两点画直线,可画多少条?
2、做一做:已知两点a、b
(1)画线段ab(连接ab)
(2)延长线段ab到点c,使bc=ab
注意:我们把上图中的点b叫做线段ac的。
3、想一想:
(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。
(2)如何用符号语言表述中点的概念?
总结:如果点b是线段ac的中点,那么;
如果,那么b是线段ac的中点。
4、知识运用:
例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。
练习:
1、如图ab=8cm,点c是ab的中点,点d是cb的中点,则ad=____cm
2、如图,下列说法,不能判断点c是线段ab的中点的是()
a、ac=cbb、ab=2acc、ac+cb=abd、cb=0.5ab
3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。
三、课堂检测1.下列说法中,正确的是()
a.射线oa和射线ao表示同一条射线;b.延长直线ab;
c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.
2.如果要在墙上固定一根木条,你认为至少要钉子()
a.1根b.2根c.3根d.4根
3.如图,若是中点,是中点,
(1)若,,_________;(2)若,_________。
4.如图在平面内有a、b、c、d四点,按要求画图。
(1)画直线ab、射线bc、线段bd
(2)连结ac交bd于点o
(3)画射线cd并反向延长射线cd,
(4)连结ad并延长至点e,使ad=de。
四、课后作业
1、下列说法中正确的是()
a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点
c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米
2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度
3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。
4、已知线段mn=7,点p在直线mn上,且mp=3,则np=。
5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。
〖人教版数学六年级下册在直线上表示数优秀教案第【2】篇〗
一、素质教育目标
(一)知识教学点
1、了解直线的概念。
2、掌握直线的表示方法,直线的公理和相交直线的概念。
3、使学生熟悉简单的几何语句,并能画出正确的图形表示几何语句。
(二)能力训练点
通过一些几何语句(如:某点在直线上,即直线“经过”这点;过两点有且只有一条直线,“有且只有”的双重含义,即存在性和惟一性)的教学,训练学生准确地使用几何语言,
并能画出正确的几何图形。学生通过“说”与“画”的尝试实践,体验领悟到“言”与“图”的辩证统一。通过教学培养学生严谨的学习作风、严密的思考方法及逻辑思维能力,这也是学习好数学必备的基本素质。
发布评论