新人教A版高中数学必修一教案
第二章 基本初等函数(Ⅰ)
一、课标要求:
教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.
1. 了解指数函数模型的实际背景.
2. 理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.
5. 理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.
6. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=logax符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).
7. 知道指数函数y=ax与对数函数y=logax互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义.
8. 通过实例,了解幂函数的概念,结合五种具体函数的图象,了解它们的变化情况 .
二、编写意图与教学建议:
1. 教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望. 教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.
2. 在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁移与互逆作用.
3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展 .
4. 教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.
5. 通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能 ..
6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.
三、教学内容与课时安排的建议
本章教学时间约为14课时.
2.1 指数函数: 6课时
2.2 对数函数: 6课时
2.3 幂函数: 1课时
小结: 1课时
§2.1.1 指数(第1—2课时)
一.教学目标:
1.知识与技能:(1)理解分数指数幂和根式的概念;
(2)掌握分数指数幂和根式之间的互化;
(3)掌握分数指数幂的运算性质;
(4)培养学生观察分析、抽象等的能力。
2.过程与方法:
通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.
3.情态与价值
(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;
(3)让学生体验数学的简洁美和统一美.
二.重点、难点
1.教学重点:(1)分数指数幂和根式概念的理解;
高中数学教案 (2)掌握并运用分数指数幂的运算性质;
2.教学难点:分数指数幂及根式概念的理解
三.学法与教具
1.学法:讲授法、讨论法、类比分析法及发现法
2.教具:多媒体
四、教学设想:
第一课时
一、复习提问:
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若,则叫做a的平方根.同理,若,则叫做a的立方根.
根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.
二、新课讲解
类比平方根、立方根的概念,归纳出n次方根的概念.
n次方根:一般地,若,则x叫做a的n次方根(nthroot),其中n >1,且n∈N*,当n为偶数时,a的n次方根中,正数用表示,如果是负数,用表示,叫做根式.n为奇数时,a的n次方根用符号表示,其中n称为根指数,a为被开方数.
类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?
零的n次方根为零,记为
举例:16的4次方根为,等等,而的4次方根不存在.
小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.
根据n次方根的意义,可得:
肯定成立,表示an的n次方根,等式一定成立吗?如果不一定成立,那么等于什么?
让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.
通过探究得到:n为奇数,
n为偶数,
如
小结:当n为偶数时,化简得到结果先取绝对值,再在绝对值算具体的值,这样就避免出现错误:
例题:求下列各式的值
(1)
分析:当n为偶数时,应先写,然后再去绝对值.
思考:是否成立,举例说明.
课堂练习:1. 求出下列各式的值
2.若.
3.计算
三.归纳小结:
1.根式的概念:若n>1且,则
为偶数时,;
2.掌握两个公式:
3.作业:P69习题2.1 A组 第1题
第二课时
提问:
1.习初中时的整数指数幂,运算性质?
什么叫实数?
有理数,无理数统称实数.
2.观察以下式子,并总结出规律:>0
① ②
③ ④
小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).
发布评论