拉普拉斯变换的Matlab求解⽅法拉普拉斯(laplace)积分变换在⼯程、应⽤数学等⽅⾯都有重要的作⽤。⽤Matlab求解更加⽅便。
1、拉普拉斯(laplace)变换
语法:F= laplace(f,t,s) %求时域函数f(t)的laplace变换F
2、拉普拉斯(laplace)反变换
语法:F=i laplace(f,t,s) %求F的laplace反变换f
下⾯是本⼈今天帮朋友做题时,⾃⼰写的matlab语句,均可执⾏:
syms s t ;
e = sym('heaviside(t)'); % 单位阶跃函数heaviside(t-a)
u = sym('dirac(t)'); % 单位脉冲函数dirac(x-a)
%LF = laplace((4*t+5)*u);
%LF = laplace((t+2)*e);
%LF = laplace(sin(5*t+pi/3)*e);
%LF = laplace(sin(t));
%LF = laplace((15*(t*t)+4*t+6)*u);
%LF = laplace(sym('heaviside(t-2)'));
%LF = laplace(sym('heaviside(t-pi/4)'));
%LF = laplace(6*sin(3*t-pi/4).*sym('heaviside(t-pi/4)'));
%F1=laplace(sin(a*t),t,s) %求sin(at)函数的laplace变换
%F2=laplace(sym('heaviside(t)')) %求阶跃函数的laplace变换(heaviside(t) 阶跃函数)
%f1=ilaplace(1/(s+a),s,t) %求1/(s+a)函数的laplace反变换
%f1=ilaplace(1,s,t) %求1函数的laplace反变换是脉冲函数dirac(t)
%cs=sym('4/(s^2+2*s+4)')*laplace(sym('Heaviside(t)'));
%ft=ilaplace(cs)
>记住我
发布评论