高三数学复数知识点
复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。也是高考数学需要掌握的知识点。下面是店铺收集整理的高三数学复数知识点,希望对你有所帮助。
高三数学复数知识点1
1.复数及其相关概念:
学前准备(1)虚数单位i,它的平方等于-1,即i2=-1。
(2)复数的代数形式:z=a+bi,(其中a,bR)
①实数当b=0时的复数a+bi,即a;
商务英语专业主要学什么②虚数当b0时的复数a+
③纯虚数当a=0且b0时的复数a+bi,即bi。
④复数a+bi的实部与虚部a叫做复数的实部,b叫做虚部(注意a,b都是实数)
⑤复数集C全体复数的集合,一般用字母C表示。
⑥特别注意:a=0仅是复数a+bi为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
2.复数的四则运算
若两个复数z1=a1+b1i,z2=a2+b2i,
(1)加法:z1+z2=(a1+a2)+(b1+b2)i;
(2)减法:z1-z2=(a1-a2)+(b1-b2)i;
(3)乘法:z1z2=(a1a2-b1b2)+(a1b2+a2中堂镇
(4)除法
(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
注意:复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i2=-1结合到实际运算过程中去。
如(a+bi)(a-bi)=a2+b2
3.共轭复数:两个实部相等,虚部互为相反数的复数互为共轭复数
4.复数的模
根据两个复数相等的定义,设a,b,c,dR,两个复数a+bi和c+di相等规定为a+bi=c+dia=c且b=d,特别地a+bi=0a=b=0。
两个复数不能比较大小,只能由定义判断它们相等或不相等。
高三数学复数知识点2
复数的概念:
形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
两个复数相等的定义:
充分就业
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R时,a+bi=0
a=0,b=0。
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
复数相等特别提醒:
一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
解复数相等问题的方法步骤:
(1)把给的复数化成复数的标准形式;
(2)根据复数相等的充要条件解之。
学好初中数学的方法
1、重视课本的内容
书本知识是初中生学习数学最根本的一部分了,初中生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,初中生一定要熟练掌握。初中生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。
2、通过联系对比进行辨析
在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。
3、多做练习题关于袁隆平的作文
爱情文章网
要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。
4、课后总结和反思
在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
数学加法心算技巧
1、分裂再凑整数加法;
比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
3、变整数再减去
比如,26+18=44,把“18”变成“20-2”,那么就是26+20-2=44;