函数的表示法
1.函数的三种表示法: 图象法、列表法、解析
2.分段函数:在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
3.映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f :A →B ”
给定一个集合A 到B 的映射,如果a ∈A,b ∈B.且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,b=f (a ),元素a 叫做元素b 的原象.
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A →B 来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。函数的表示法
注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.
4.常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
5.分段函数:在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
6.复合函数:如果y 是u 的函数,u 又是x 的函数,即y=f (u ),u=g (x ),那么y 关于x 的函数y=f (g (x ))叫做函数y=f (u )(外函数)和u=g (x )(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y.例如:函数212x y += 是由y=2u
和u=x2+1 复合而成立。
复合函数的定义域:①已知f(x)的定义域为(a,b),求f(g(x))的定义域的方法:已知f(x)的定义域为(a,b),求f(g(x))的定义域.实际上是已知中间变量的u的取值范围,即u∈(a,b),g(x)(a,b).通过解不等式a
<g(x)<b求得x的范围,即为f(g(x))的定义域。②已知f(g(x))的定义域为(a,b),求f(x)的定义域的方法:若已知f(g(x))的定义域为(a,b),求f(x)的定义域。实际上是已知直接变量x的取值范围,即x∈(a,b).先利用a<x<b 求得g(x)的范围,则g(x)的范围即是f(x)的定义域.
7.函数的解析表达式:(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x).