初中《数学》八年级上册常考知识点及练习及答案
(一)三角形部分
一、知识点汇总
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC.三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;
(3)△ABC是三角形ABC的符号标记,单独的△没有意义.
2、(1)三角形按边分类:
(2)三角形按角分类:
3、三角形的三边关系
三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。
注意: (1)三边关系的依据是:两点之间线段最短;
(2)围成三角形的条件是:任意两边之和大于第三边.
4、和三角形有关的线段:
(1)三角形的中线
三角形中,连结一个顶点和它对边中点的线段
表示法:1、AD是△ABC的BC上的中线. 2、BD=DC=0.5BC.
3、AD是 ABC的中线;
注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。
表示法:1、AD是△ABC的∠BAC的平分线.2、∠1=∠2=0.5∠BAC.
3、AD平分 BAC,交BC于D
注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;
③三角形三条角平分线交于三角形内部一点;
(3)三角形的高
三角形的高:从三角形的一顶点向它的对边作垂线,
顶点和垂足之间的线段叫做三角形的高,
表示法:1、AD是△ABC的BC上的高。 2、AD⊥BC于D。
3、∠ADB=∠ADC=90°。 4、AD是△ABC的高。
注意:①三角形的高是线段:高与垂线不同,高是线段,垂线是直线。
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外;
③三角形三条高所在直线交于一点.(而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。)
4、三角形的内角和定理
定理:三角形的内角和等于180°.
推论:直角三角形的两个锐角互余。
5、三角形内角外角的关系:
(1)三角形三个内角的和等于180 ;
(2)三角形的一个外角等于和它不相邻的两个内角的和;
(3)三角形的一个外角大于任何一个和它不相邻的内角.
(4)直角三角形的两个锐角互余.
6、三角形的外角的定义:
三角形一边与另一边的延长线组成的角,叫做三角形的外角.
注意:每个顶点处都有两个外角,但这两个外角是对顶角.
如:∠ACD、∠BCE都是△ABC的外角,且∠ACD=∠BCE,数学八年级上册 所以说一个三角形有六个外角,但我们每个一个顶点处只选一个外角,这样三角形的外角就只有三个了.
7. 三角形外角的性质
(1)三角形的一个外角等于它不相邻的两个内角之和.
(2)三角形的一个角大于与它不相邻的任何一个内角.
注意:(1)它不相邻的内角不容忽视;
(2)作CM∥AB由于B、C、D共线
∴∠A=∠1,∠B=∠2.
即∠ACD=∠1+∠2=∠A+∠B.
那么∠ACD>∠A.∠ACD>∠B。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的外角和:多边形的内角和为360°。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
(2)正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
9、.三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.
注意:(1)三角形具有稳定性;(2)四边形没有稳定性。(3)多边形没有稳定性。
二、题型解析
1. 三角形内角和定理的应用
例1. 如图已知中,于D,E是AD上一点。
求证:
证明:由AD⊥BC于D,可得∠CAD=∠ABC 又
则 可证 即
说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。
例2. 锐角三角形ABC中,∠C=2∠B,则∠B的范围是( )
A. B. C. D.
分析: 因为为锐角三角形,所以
又∠C=2∠B, 又∵∠A为锐角,为锐角
,即 .故选C。
例3.已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法确定
分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。
解:∵三角形的一个外角等于160° ∴另两个外角的和等于200°
设这两个外角的度数为2x,3x ∴2x+3x=200解得:x=40,2x=80,3x=120
发布评论