新人教版八年级数学上册知识点归纳
学习八年级数学知识不在于力量多少,而在能坚持多久。人有了信念和追求就能忍受一切艰苦,适应一切环境。做事有始有终值得开始的事就值得完成。聪明人做事总是有始有终。下面是店铺为大家精心推荐的新人教版八年级数学上册知识点归纳,希望能够对您有所帮助。
新人教版八年级数学上册知识点归纳第11-12章
第十一章 全等三角形
2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).
3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
第十二章 轴对称
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
3.角平分线上的点到角两边距离相等.
4.线段垂直平分线上的任意一点到线段两个端点的距离相等.
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
6.轴对称图形上对应线段相等、对应角相等.
7.画一图形关于某条直线的轴对称图形的步骤:到关键点,画出关键点的对应点,按照原图顺序依次连接各点.
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.
10.等腰三角形的判定:等角对等边.
11.等边三角形的三个内角相等,等于60°,
12.等边三角形的判定: 三个角都相等的三角形是等腰三角形.
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形.
13.直角三角形中,30°角所对的直角边等于斜边的一半.
14.直角三角形斜边上的中线等于斜边的一半
新人教版八年级数学上册知识点归纳第13-14章
第十三章 实数
※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.
※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.
※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.
※正数的立方根是正数;0的立方根是0;负数的立方根是负数.
数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
第十四章 一次函数
1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).
2.根据题意写出函数解析式:关键到函数与自变量之间的等量关系,列出等式,既函数解析式.
3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.
4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.
5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
6.已知两点坐标求函数解析式(待定系数法求函数解析式):
把两点带入函数一般式列出方程组
求出待定系数
把待定系数值再带入函数一般式,得到函数解析式
7.会从函数图象上到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)
数学八年级上册新人教版八年级数学上册知识点归纳第15章
第十五章 整式的乘除与因式分解
1.同底数幂的乘法
※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用: (m、n均为正整数)
2.幂的乘方与积的乘方
※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2. .
※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同.
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).
发布评论