三角形知识点总结
八年级上册数学三角形知识点总结(通用7篇)
我们在学习数学的过程中,会学习各种各样的图形,其中在八年级的时候我们重点学习了三角形的定理知识。下面是店铺为大家整理的八年级上册数学三角形知识点总结,希望对大家有用!
三角形知识点总结 篇1
1. 三角形的边角关系:
(1)三角形的任意两边之和大于第三边,任意两边之差小于第三边。
(2)三角形内角和等于180°。
(3)三角形的任一个外角等于与它不相邻的两个内角的和。
(1)可证明它们所在的两个三角形全等。
(2)角平分线性质:角平分线上的点到角的两边距离相等。
(3)等角对等边。
(4)等腰三角形的三线合一的性质。
(5)垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等。
(6)等式的性质。
(7)中点的定义。
3. 证明角相等的方法:
(1)同角(等角)的余角相等。
(2)同角(等角)的补角相等。
(3)平行线的性质:
①两直线平行,同位角相等。
②两直线平行,内错角相等。
(4)全等三角形的对应角相等。
(5)等边对等角。
(6)角平分线的定义。
(7)等式的性质。
(8)对顶角相等。
4. 证明垂直的方法
(1)证邻补角相等。
(2)证和已知直角三角形全等。
(3)勾股定理的逆定理。
三角形知识点总结 篇2
轴对称
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
5.线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;这条线段两个端点距离相等的点都在它的垂直平分线上.
6.轴对称图形上对应线段相等、对应角相等。三角形的内角
轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.
7.画一图形关于某条直线的轴对称图形的步骤:到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
10.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3 等边三角形的各角都相等,并且每一个角都等于60°
11.等边三角形的三个内角相等,都是60°,
12.等边三角形的判定:
三个角都相等的三角形是等边三角形 ;
有一个角等于60°的等腰三角形是等边三角形
13.直角三角形中,30°角所对的直角边等于斜边的一半。
三角形知识点总结 篇3
(1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)
三角形中,连结一个顶点和它对边中点的线段。
表示法:①AD是△ABC的BC上的中线.
②BD=DC=1/2 BC
注意:
①三角形的中线是线段;
②三角形三条中线全在三角形的内部且交于三角形内部一点(注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)
③中线把三角形分成两个面积相等的三角形。
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
表示法:
①AD是△ABC的∠BAC的平分线.
②∠1=∠2=∠BAC.
注意:
①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。角平分线的性质:角平分线上的点到角的两边距离相等)
③用量角器画三角形的角平分线。
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的.线段.
表示法:
①AD是△ABC的BC上的高线
②AD⊥BC于D
③∠ADB=∠ADC=90°.
注意:
①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点.这点叫垂心)
三角形知识点总结 篇4
一、轴对称图形
1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
4、轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2、线段垂直平分线上的点与这条线段的两个端点的距离相等
3、与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
1、在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数、关于y轴对称的点横坐标互为相反数,纵坐标相等、
2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
发布评论