有关莫比乌斯带的小故事
“莫比乌斯带”有点神秘,一时又派不上用场,但是人们还是根据它的特性编出了一些故事,据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉。而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。
县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑。县官的毒计又落空了。
现实可能根本不会发生这样的故事,但是这两个故事却很好地反映出“莫比乌斯带”的特点。
三、奇妙的莫比乌斯带
左图所示的带子是由一张纸条的两端粘接而成。纸的一面称为带的内侧,而纸的另一面则称为带的外侧。我们把这样的曲面叫做“双侧曲面”。如果一只蜘蛛想沿着纸带从外侧爬到内侧,那么它非得设法跨越带的边缘不可.
右面这张图所示的是莫比乌斯带,它也是由一张纸条两端粘接而成,不过,在粘接前一端扭转了180°。现在,所得的纸带已不再具有两面,它只有一个面,一条边,这样的曲面我们就叫它“单侧曲面”。设想一只蜘蛛开始沿着莫比乌斯带爬,那么它能够爬遍整条带子而无须跨越带的边缘。要证实这一点,只要拿一支铅笔,笔不离纸连续地画线.那么,你将会经过整条的带子,并返回你原先的起点.
麦比乌斯圈莫比乌斯带的另一个有趣的性质,只要你沿着如下图所示的带子中央的虚线剪开把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟然是一个大圈儿。
如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕
两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不仅没有一分为二,反而剪出一个两倍长的纸圈。
有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。
同学们如果感兴趣,可以将纸条四等分、五等分……,做成莫比乌斯带,剪剪看会出现什么结果。
四、克莱因瓶
但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯•克莱茵(Felix Klein,1849~1925),终于到了一种自我封闭而没有明显边界的模型,以他的名字命名的著名“瓶子”—— “克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。
这是一个象球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就象是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面。
我们可以说一个球有两个面——外面和内面,如果一只蚂蚁在一个球的外表面上爬行,那么如果它不在球面上咬一个洞,就无法爬到内表面上去。轮胎面也是一样,有内外表面之分。但是克莱因瓶却不同,我们很容易想象,一只爬在“瓶外”的蚂蚁,可以轻松地通过瓶颈而爬到“瓶内”去——事实上克莱因瓶并无内外之分!
如果把一个克莱因瓶适当地剪开来,我们就能得到两条莫比乌斯带。
菲立克斯·克莱因 克莱因瓶 8字形克莱因瓶
除了我们上面看到的克莱因瓶的模样,还有一种不太为人所知的“8字形”克莱因瓶。它看起来和上面的曲面完全不同,但是在四维空间中它们其实就是同一个曲面——克莱因瓶。
五、麦比乌斯圈的应用:
数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“麦比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。
数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“麦比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。
发布评论