一、知识点
1、因式分解:把一个多项式化成几个整式的积的形式的变形叫做因式分解;(也叫做把这个多项式分解
因式);
2、公因式:多项式的各项都有的一个公共因式;
3、因式分解的方法:
提公因式法:关键在于出最大公因式
因式分解:
平方差公式:a² -b² =(a + b)(a - b)
公式法
完全平方公式:(a + b)² = a² + 2ab +b²
(a - b)² = a² + 2ab +b²
二、考点点拨与训练
考点1:判定是否是因式分解
A. B.
C. D.
方法或规律点拨
本题考查因式分解的定义,熟练掌握因式分解的定义是解题的关键.
巩固练习
1.(2021·沙坪坝区·重庆八中八年级期末)下列各式,从左到右变形是因式分解的是( )
A.a(a+2b)=a2+2ab B.x﹣1=x(1﹣)
C.x2+5x+4=x(x+5)+4 D.4﹣m2=(2+m)(2﹣m)
2.(2021·北京九年级专题练习)下列等式中,从左到右的变形是因式分解的是( )
A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1
C.x2﹣4=(x+2)(x﹣2) D.x+2=x(1+)
3.(2020·浙江七年级期末)下列由左到右的变形,属于因式分解的是( )
A. B.
C. D.
4.(2020·浙江七年级期末)下列从左到右的变形是因式分解的是( )
A. B.
C. D.
5.(2021·重庆渝中区·初二数学下册八年级期末)下列各式从左到右的变形中,属于因式分解的是( )
A.a(a+1)=a2+a
B.a2+2a﹣1=a(a+2)﹣1
C.4a2﹣2a=2a(2a﹣1)
D.a2﹣4+4a=(a+2)(a﹣2)+4a
6.(2021·广东韶关市·八年级期末)下列各式从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
7.(2021·山东泰安市·八年级期末)下列等式从左到右的变形,属于因式分解的是( )
A. B.
C. D.
8.(2020·浙江杭州市·七年级期末)下列等式中,从左到右的变形中是因式分解的是( )
A. B.
C. D.
9.(2021·江苏南通市·八年级期末)对于①,②,从左到右的变形,表述正确的是( )
A.都是因式分解 B.①是因式分解,②是乘法运算
C.都是乘法运算 D.①是乘法运算,②是因式分解
10.(2021·河南开封市·八年级期末)下列从左边到右边的变形,是因式分解的是( )
A. B.
C. D.
考点2:求因式中的字母系数
典例:(2021·江西赣州市·八年级期末)仔细阅读下面的例题:
例题:已知二次三项式有一个因式是,求另一个因式及m的值.
解:设另一个因式为,得,
则,
,,
解得,,
∴另一个因式为,m的值为6.
依照以上方法解答下列问题:
(1)若二次三项式可分解为,则________;
(2)若二次三项式可分解为,则________;
(3)已知二次三项式有一个因式是,求另一个因式以及k的值.
方法或规律点拨
本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.
巩固练习
1.(2020·浙江杭州市·七年级期末)把多项式分解因式,得,则a,b的值分别是( )
A. B. C. D.
2.(2021·四川宜宾市·八年级期末)因式分解时,甲看错了的值,分解的结果是,乙看错了的值,分解的结果为,那么分解因式正确的结果为( )
A. B.
C. D.
3.(2021·四川省遂宁市第二中学校八年级月考)多项式 ()分解因式的结果足,则下列判断正确的是( )
A. B. C.且 D.且
4.(2020·山西临汾市·)把分解因式得,则的值是( )
A.3 B.2 C. D.1
5.(2020·山东泰安市·东平县江河国际实验学校八年级月考)如果多项式x2﹣mx+6分解因式的结果是(x﹣3)(x+n),那么m,n的值分别是( )
A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=2
6.(2020·福建宁德市·八年级期末)多项式x2+mx﹣21因式分解的结果为(x+3)(x﹣7),则m的值是( )
A.4 B.﹣4 C.10 D.﹣10
7.(2020·全国七年级专题练习)若x-2和x+3是多项式x2+mx+n仅有的两个因式,则mn的值为( )
A.1 B. C. D.6
8.(2020·江苏苏州市·七年级期末)若代数式x2﹣mx+4因式分解的结果是(x+2)2,则m的值是( )
A.﹣4 B.4 C.﹣2 D.±4
9.(2019·四川成都市·八年级期末)已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为( )
A.b=3,c=﹣2 B.b=﹣2,c=3 C.b=2,c=﹣3 D.b=﹣3,c=﹣2
10.(2021·全国九年级专题练习)若多项式含有因式,则的值是________.
11.(2020·大庆市万宝学校八年级期末)多项式因式分解得,则__________.
12.(2021·全国九年级专题练习)小明看到了这样一道被墨水污染的因式分解题:,(其中、代表两个被污染的系数),则_______,_______.
13.(2021·社旗县新时代国际学校八年级月考)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成,另一位同学因看错了常数项而分解成,求出原多项式.
考点3:用提公因式法因数分解
典例:63.(2020·山东中区·初二期中)阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法 次,结果是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)结果是 .
方法或规律点拨
本题考查因式分解-提公因式法,解题的关键是掌握因式分解-提公因式法.
巩固练习
1.(2020·树德中学都江堰外国语实验学校期中)把多项式m2(a﹣2)﹣m(a﹣2)因式分解,结果正确的是( )
A.(a﹣2)(m2﹣m) B.m(a﹣2)(m+1)
C.m(a﹣2)(m﹣1) D.m(2﹣a)(m+1)
2.(2020·重庆月考)一个长、宽分别为a、b的长方形的周长为10,面积为6,则的值为________.
3.(2020·树德中学都江堰外国语实验学校期中)分解因式:ab﹣b=_____.
4.(2019·广东潮州·其他)分解因式:x2y﹣2xy=_____.
5.(2020·山东东明·期末)若,则代数式的值为_________.
6.(2020·安徽省安庆市外国语学校期末)因式分解:_________.
7.(2020·四川开江·期末)因式分解:____.
8.(2020·江西省南丰县教育局教学研究室一模)分解因式: .
9.(2020·山东日照·中考真题)分解因式:mn+4n=_____.
10.(2021·温州市第二十三中学初三开学考试)因式分解:________.
11.(2020·陕西城固·初二期末)分解因式;x2﹣16x=______.
考点4:用平方差公式因式分解
典例:(2020·思南县张家寨初级中学期末)因式分解:
(1) ; (2) .
方法或规律点拨
本题考查了运用提公因式法和平方差公式法分解因式,难度不大,属于基础题,熟练掌握基本运算公式和方法是解答的关键.
巩固练习
1.(2020·陕西横山·期末)下列各式中,能用平方差公式分解因式的是( )
A.a2+4b2 B.﹣x2+16y2 C.﹣a2﹣4b2 D.a﹣4b2
2.(2020·湖南邵阳·期末)(______).
3.(2020·全国月考)因式分解:a2b﹣25b=_____.
4.(2020·深圳市福田区南华实验学校其他) 因式分解:(x+2)2﹣9=_____.
5.(2020·广东高州·期中)在实数范围内分解因式:a4﹣4=_____.
6.(2020·树德中学都江堰外国语实验学校期中)如果,,那么______.
7.(2019·四川南充·一模)把分解因式,结果是 _________.
8.(2021·浙江瑞安·开学考试)若是方程组的解,则代数式的值是_______.
考点5:用完全平方公式因式分解
典例:(2020·沈阳市第一二七中学期中)如果二次三项式x2﹣16x+m2是一个完全平方式,那么m的值是( )
A.±8 B.4 C.±4 D.8
方法或规律点拨
本题考查了完全平方公式.能够掌握完全平方公式的运用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,根据乘积二倍项确定出这两个数是求解的关键.
巩固练习
1.(2020·湖南期末)下列因式分解错误的是( )
A. B.
C. D.
2.(2020·重庆月考)下列多项式中,不能进行因式分解的是( )
A.﹣a2+b2 B.﹣a2﹣b2 C.a3﹣3a2+2a D.a2﹣2ab+b2﹣1
3.(2020·思南县张家寨初级中学期末)已知x2+kx+25可以用完全平方公式进行因式分解,那么k的值是( )
A.5 B.±5 C.10 D.±10
4.(2020·四川省射洪县射洪中学外国语实验学校期中)下列各式能分解因式的是( ).
A. B. C. D.
5.(2020·吉林市舒兰市教育局初三开学考试)分解因式(x-1)2-2(x-1)+1的结果是( )
A.(x-1)(x-2) B.x2
发布评论