八年级数学下学期期期末测试卷
1、化简等于( )
A、 B、 C、 D、
2、一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时。
A、 B、 C、 D、
3、如图,点A是反比例函数图象上一点,AB⊥y轴于点B,则△AOB的面积是( )
A、1 B、2 C、3 D、4
4、在三边分别为下列长度的三角形中,哪些不是直角三角形( )
A、1.5,3.9,3.6 B、2,3, C、4.3,7.3,5.2 D、1,
6、,,……,的平均数为a,,,……,的平均数为b,则,,……,的平均数为( )
A、 B、 C、 D、
7、当5个整数从小到大排列,则中位数是4,如果这5个数
的唯一众数是6,则这5个整数可能的最大和是( )
A、21 B、22 C、23 D、24
8、如图,在一个由4×4个小正方形组成的正方形网格中,
阴影部分面积与正方形ABCD的面积比是( )
A、3:4 B、5:8 C、9:16 D、1:2
9、已知四边形ABCD的对角线相交于O,给出下列 5个条件①AB∥CD ②AD∥BC③AB=CD ④∠BAD=∠DCB,从以上4个条件中任选 2个条件为一组,能推出四边形ABCD为平行四边形的有( )
A6组 B.5组 C.4组 D.3组
10、计算(x+y)·=___________
11、如图,△ABC、△ACE、△ECD都是等边三角形,则图中的平行四边形有那些? 。
12、数据1,2,8,5,3,9,5,4,5,4的众数是_________;中位数是__________。
13、已知一个工人生产零件,计划30天完成,若每天多生产5个,则在26天完成且多生产15个。求这个工人原计划每天生产多少个零件?如果设原计划每天生产x个,根据题意可列出的方程为 。
14、已知,在△ABC中,AB=1,AC=,∠B=45°,那么△ABC的面积是 。
15、如右图,△OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是_______。
16、(1)计算: (2)解分式方程:.
17、已知函数y = y1-y2,y1与x成反比例,y2与x-2成正比例,且当x = 1时,y =-1;当x = 3时,y = 5.求当x=5时y的值。
18、已知:如图,在□ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形。
求证:四边形ABOE、四边形DCOE都是平行四边形。
19、某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?
20、张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 | 第9次 | 第10次 | |
王军 | 68 | 80 | 78 | 79 | 81 | 77 | 78 | 84 | 83 | 92 |
张成 | 86 | 80 | 75 | 83 | 85 | 77 | 79 | 80 | 80 | 75 |
平均成绩 | 中位数 | 众数 | |
王军 | 80 | 79.5 | |
张成 | 80 | 80 | |
利用表中提供的数据,解答下列问题:
(1)填写完成下表:
(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差=33.2,请你帮助张老师计算张成10次测验成绩的方差;
(3)请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由。
21、如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P。若木棍A端沿墙下滑,且B端沿地面向右滑行。
(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由。
(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值。
22.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
1-9 A D B C B D A B B
10、x+y;11、□ABCE,□ACDE;12、5;4.5;13、;14、;15、;16(1) 原式= (2)经检验:原方程无解
17、解:设,,则y = 。
根据题意有:
,解得:,
∴
当x=5时,y=.
18、∵□ABCD中,对角线AC交BD于点O,∴OB=OD,又∵四边形AODE是平行四边形
∴AE∥OD且AE=OD,∴AE∥OB且AE=OB,∴四边形ABOE是平行四边形
同理,四边形DCOE初二数学下册也是平行四边形。
19、自行车速度为16千米/小时,汽车速度为40千米/小时.
20、(1)78,80(2)13(3)选择张成,因为他的成绩较稳定,中位数和众数都较高
21、(1)不变。理由:在直角三角形中,斜边上的中线等于斜边的一半,因为斜边AB不变,所以斜边上的中线OP不变。
(2)当△AOB的斜边上的高h等于中线OP时,△AOB的面积最大。
如图,若h与OP不相等,
则总有h<OP。故根据三角形面积公式,有h与OP相等时△AOB的面积最大
此时,S△AOB=.故△AOB的最大面积为。
解:
(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,
(舍去).因为BQ+CM=,此时点Q与点M不重合.所以符合题意.
②当点Q与点M重合时,
.此时,不符合题意.故点Q与点M不能重合.
所以所求x的值为.
(2)由(1)知,点Q 只能在点M的左侧,
①当点P在点N的左侧时,由,解得.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,由, 解得.
当x=4时四边形NQMP是平行四边形.所以当时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形, 则点F一定在点N的右侧,且PE=NF,
即.解得.
由于当x=4时, 以P,Q,M,N为顶点的四边形是平行四边形,所以,以P,Q,M,N为顶点的四边形不能为等腰梯形.
第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性。第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来。中等的动点题也就没问题了。但是在难一点的动点题就要你的能力了,比如让你等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内
发布评论