关于初二数学下册必备知识点归纳
初二数学下册必备知识点归纳
第一章分式
1、分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
初二数学下册
2、分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数
1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用。
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差。
初二数学下册必考知识点
1、直角三角形斜边上的中线等于斜边上的一半。
2、四边形的外角和等于360°。
3、等腰梯形性质定理:等腰梯形在同一底上的两个角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直。
6、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
7、如果两条直线都和第三条直线平行,这两条直线也互相平行。
8、同位角相等,两直线平行。
9、同旁内角互补,两直线平行。
10、两直线平行,同位角相等。
二次根式知识点
(一)一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。
(二)二次根式的加减法
1.同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2.合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
(三)二次根式的乘除法
二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根式。
一次函数知识点
(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
(二)一次函数的图像及性质
1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。