六年级下册  第五章 有理数知识点
1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
零是正数和负数的分界。
4、有理数:整数和分数统称为有理数。
有理数:正数:正整数、零、负整数
        分数:正分数、负分数
5、数轴:规定了原点、正方向、单位长度的直线叫做数轴。
数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。 
6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
8、有理数加法法则
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。
表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。
也就是说,在积的各个因数中,只有一个负号,积为负;
有两个负号,积为正;
有三个负号,积为负;
有四个负号,积为正;
有零时积就是零。
11、倒数
  1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.六年级下册数学教案
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
an中,a叫做底数,n叫做指数。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
1)“先乘方,再乘除,最后加减”的顺序进行;
2)同级运算,从左到右进行;
3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学计数法:把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。
16、近似数:与准确数相近的数
17、有理数可以写成(m、n是整数,n≠0)的形式。另一方面,形如(m、n是整数,n≠0)的数都是有理数。所以有理数可以用(m、n是整数,n≠0)表示。
六年级下册  第五章  有理数配套练习
一、选择题
1、下列运算中正确的是(      ).
 A. a2·a3=a6          B. =2    C. |(3-π)|=-π-3    D. 32=-9
2、下列各判断句中错误的是(   
    A.数轴上原点的位置可以任意选定
B.数轴上与原点的距离等于个单位的点有两个
C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示
D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、是有理数,若,下列说法正确的是(   
      A.一定是正数  B.一定是负数    C.一定是正数    D.一定是负数
4、两数相加,如果比每个加数都小,那么这两个数是(