一、内容及其解析
(一)内容:零点存在性定理.
函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图象表示看,函数的零点就是函数f(x)与x轴交点的横坐标。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形、函数与方程有机的联系在一起。
函数零点的存在性判定定理,其目的就是通过函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关
键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。
函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。
二、目标及其解析
(一)教学目标
(1)知识与技能:结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。
(2)过程与方法:培养学生观察 、思考、分析、猜想,验证的能力,并从中体验从特殊
到一般及函数与方程思想。渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。
(3)情感态度与价值观:在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。
(二)解析
1.对于常见函数的图象学生要有印象,要能用描点法画出一些复杂函数的图象,同时,研究函数的单调性、奇偶性等性质,来判断方程的根的存在与否和个数;
2.函数的零点、方程的根、函数图象与X轴交点的横坐标具备等价关系,这种等价关系实质上是数学本质一致,只是各自有不同的描述对象而已,从而向学生渗透转化的数学思想;
3.本节课对函数零点存在性(即方程的根的存在性)的探究是借助实际问题抽象出来的,由此推广到一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,要注意推广的可行性、借助于函数图象的直观性,只要求学生理解其合理性并能对具体的函数进行简单应用。教学中,教师可以引导学生借助函数图象分析其逆定理的正确与否,由此达到
充分理解此定理的目的。
三、问题诊断分析
通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。
对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。
函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。
四、学习重难点
重点:体会函数零点与方程根之间的联系,掌握零点的概念及零点存在性定理
难点:探究并发现零点存在性定理及其应用
五、学法指导
以问题为载体,学生活动为主线,以多媒体辅助教学为手段利用探究式教学法,构建学生自主探究、合作交流的平台
教学过程设计
一、探究零点存在定理
思考:下面有两组简笔画,哪一组说明人一定过河了?
第Ⅰ组能说明他的行程中一定曾渡过河,而第Ⅱ组中他的行程就不一定曾渡过河。
设计意图:从现实生活中的问题,让学生体会动与静的关系,系统与局部的关系。
问题1: 将河流抽象成x轴,将前后的两个位置视为A、B两点。请问当A、B与x轴怎样的位置关系时,AB间的一段连续不断的函数图象与x轴一定会有交点?
设计意图:将现实生活中的问题抽象成数学模型,进行合情推理,将原来学生只认为静态的函数图象,理解为一种动态的过程。
问题2:A、B与x轴的位置关系,如何用数学符号(式子)来表示?
A、B两点在x轴的两侧。可以用f(a)·f(b)<0来表示。
设计意图:由原来的图象语言转化为数学语言。培养学生的观察能力和提取有效信息的能力。体验语言转化的过程。
问题3: 满足条件的函数图象与x轴的交点一定在(a,b)内吗?即函数的零点一定在(a,b)内吗?
一定在区间(a,b)上。若交点不在(a,b)上,则它不是函数图象。
设计意图:让学生体验从现实生活中抽象成数学模型时,需要一定修正。加强学生对函数动态的感受,对函数的定义有进一步的理解。
展示ppt问题1、2,由一次函数、二次函数这两类特殊的函数,进一步推广到一般的情形,
通过举例应用,Ppt思考三、四得零点存在性定理。
新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.
设计意图:引导学生探究零点存在性定理.
一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
(二)新知应用与深化
例题1 观察下表,分析函数在定义域内是否存在零点?
-2 | -1 | 0 | 1 | 2 | |
-109 | -10 | -1 | 8 | 107 | |
分析:函数图象是连续不断的,又因为,所以在区间(0,1)上必存在零点。
设计意图:初步应用零点的存在性定理来判断函数零点的存在性问题。并引导学生探索判断函数零点的方法,通过作出x,的对应值表,来寻函数值异号的区间,还可以借助计算机来作函数的图象分析零点问题。而且对函数有一个零点形成直观认识.
例题2 求函数的零点个数.
高中数学教案分析:用计算器或计算机作出x,的对应值表和图象。
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
由表可知,f (2)<0,f (3)>0,则,这说明函数在区间(2,3)内有零点。结合函数的单调性,进而说明零点是只有唯一一个.
发布评论